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Abstract

Experiments with relatively high doses are often used to predict risks at appreciably lower doses. 

A point of departure (PoD) can be calculated as the dose associated with a specified moderate 

response level that is often in the range of experimental doses considered. A linear extrapolation to 

lower doses often follows. An alternative to the PoD method is to develop a model that accounts 

for the model uncertainty in the dose–response relationship and to use this model to estimate the 

risk at low doses. Two such approaches that account for model uncertainty are model averaging 

(MA) and semi-parametric methods. We use these methods, along with the PoD approach in the 

context of a large animal (40,000+ animal) bioassay that exhibited sub-linearity. When models are 

fit to high dose data and risks at low doses are predicted, the methods that account for model 

uncertainty produce dose estimates associated with an excess risk that are closer to the observed 

risk than the PoD linearization. This comparison provides empirical support to accompany 

previous simulation studies that suggest methods that incorporate model uncertainty provide 

viable, and arguably preferred, alternatives to linear extrapolation from a PoD.
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1. Introduction

Data exhibiting a dose–response (D–R) relationship is the starting point for a quantitative 

risk assessment. Often such data come from animal studies conducted at relatively high 

doses. Since the risk associated with lower doses is often of interest, risk estimates based on 
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these high dose data require extrapolations to lower doses that are relevant to human 

exposure. Though other extrapolations such as species extrapolation are often needed, we 

will not be consider these here.

In low-dose extrapolations, one fits a statistical model for excess risk to the observed high 

dose data and uses this fit to extrapolate to dose levels of interest. Multiple competing 

models can fit the D–R data set; however, the model-predicted doses, or lower limits on 

such doses, associated with a specified excess risk may differ by an order of magnitude or 

more. Alternatively, a fitted model for excess risk might be used to derive a so-called “point 

of departure” (PoD), which is a dose associated with a specific risk level in the range of the 

data. Using the PoD, lower doses are estimated by a linear interpolation between the PoD 

and the zero dose risk estimates. This latter strategy is suggested in the US EPA cancer risk 

guidelines (US EPA, 2005 ) for toxicants that are: thought to be either DNA-reactive with 

direct mutagenic activity; associated with “human exposures or body burdens are high and 

near doses associated with key precursor events in the carcinogenic process” (US EPA, 

2005, p. 3–21); or as a default if no mode of action can be inferred.

An alternative extrapolation method would be to use a method that explicitly incorporates 

model uncertainty into the extrapolation process, e.g., model averaging or semiparametric 

methods. While these methods are promising, the adoption of such methods requires a 

comprehensive analysis on their performance from both a statistical and empirical 

perspective. Simulation studies have previously reported the statistical benefits of model 

averaging and semiparametric methods (Wheeler and Bailer 2007, 2012); an empirical 

comparison of these alternatives is difficult because of the lack of studies with adequate data 

in the low-dose region.

A recent animal bioassay conducted by Bailey et al. (2009) collected a large amount of 

response data in the low-dose region. Here 40,800 trout were divided into eight groups, 

seven groups were exposed to a range of dibenzo[a,l]pyrene concentrations in their diet 

ranging from 0.45 ppm–225 ppm, with one control group. In this study, risk of adverse 

response is estimable to a high degree of precision for each of these doses, including the 

observations in the low dose region. Here it is possible to fit models using only high-dose 

data, and compare the risk predictions from the extrapolation methods to the observed risks 

in the low-dose region. This data set provides a unique opportunity to study the behavior of 

extrapolation methods to experimental data in the low dose region. These data provide an 

analysis opportunity similar to the work conducted using the ED01 “megamouse” study 

(Cairns, 1980).

We begin with a description of the low-dose risk extrapolation methods and the “megatrout” 

experiment. We then fit the described methods only to the high-dose data to generate low-

dose risk estimates. We then compare these estimates to the observed risks at low-dose 

levels. These methods are then compared with two smaller data sets, and we conclude by 

commenting on the potential relevance of this strategy for risk assessment practice.
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2. Methods

2.1. Quantal response models

Consider the dose–response relationship between a dose, d, of a chemical and the 

probability, π(d), of adverse response (e.g., cancer) at d. Data are often of the form: dose, 

number of adverse responses at that dose, and number tested at that dose. As an aside, we 

use “dose” to refer to the variable used in a model for the predicting the probability of an 

adverse response. This could be a measured environmental concentration or an estimated 

delivered dose at some target tissue. A variety of models are available for fitting such data 

including those which can be fit in the US EPA benchmark dose software BMDS (US EPA, 

2001) as well as other software packages (Wheeler and Bailer, 2008). These models include:

(M1)

(M2)

(M3)

(M4)

(M5)

(M6)

(M7)

(M8)

(M9)

where πk(d) represents the probability of adverse response given exposure to d in model k (k 

= 1, 2, . . ., 9), Φ (x) is the cumulative distribution function of a standard normal random 

variable at x (i.e., the integral of a N(0, 1) density from −∞ to x), and πk(0) = γ when d = 0 

for all models except (M1) and (M5). Bounds in the above models reflect values that include 

both sub-linear and supra-linear dose–response patterns (e.g. a supra-linear dose response 

pattern is model M7 with α = 0.5 and a sub-linear dose response pattern is model M7 with α 

= 2.0). These bounds are broader than those used as defaults in the BMDS software and are 
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specified, based upon statistical considerations described in Wheeler and Bailer (2007), to fit 

data arising from a linear or sub-linear dose response patterns (discussed below).

Also note that, while model (M4) can be considered as an approximation to a simple 

multistage cancer model and model M1 and M5 relate to tolerance distributions, these 

models are not strictly biologically based. They do have a long history of being used in 

dose–response estimation. We further caution that even if biologically based models were 

used, a similar model uncertainty problem exists, since there are frequently multiple 

competing biologically based models and there is no reason to prefer one model over the 

other. In addition, the component of the model impacted by a toxicant, the form of the 

toxicant impact on this component and the complexity of a biologically-based model are 

also sources of uncertainty. Consequently, the following analysis is also applicable to 

situations where there is a reason to use biologically based models.

2.2. Risk estimation and low-dose extrapolation: linear extrapolation from a point of 
departure

For this study, we look at estimating the added risk function, i.e., AR(d) = π(d) − π(0), using 

the above mentioned extrapolation methods. Using a linear extrapolation from [PoD, 

π(PoD)] to [0, π(0)], the added risk at a specific dose d is estimated as

where π(PoD) and π(0) are model based estimates (e.g. M1–M9). Here PoD is the dose 

associated with a prespecified level of risk (known as the benchmark response or BMR), e.g. 

PoD could be the BMD where BMR = π(BMD) − π(0). The estimate of AR(d) that 

corresponds to such a linear extrapolation is illustrated in Fig. 1. Here the dose associated 

with a specified added risk (AR), is estimated (aka the benchmark dose (BMD) where BMD 

= PoD), and a linear extrapolation to the origin is computed. In this Fig., data from three 

hypothetical dose levels plus a control group (d = 0) are displayed along with the resulting 

fit of the Weibull Model (M7). The PoD identified in this plot is the dose that corresponds to 

a BMR = 10% added risk. While other added risk values (e.g., 1% and 5%) are often used, 

we use 10% exclusively in this work. In the left pane of Fig. 1, the point estimate of the 

BMD is used as the PoD, while the right pane illustrates the PoD alternatively defined as the 

lower limit on the BMD, the BMDL. The latter method is the preferred method in the US 

EPA cancer guidelines (US EPA, 2005), and is used exclusively for the remainder of the 

work since the BMDL accounts for sampling variability while the BMD is the best point 

estimate.

We focus on estimating the AR(d) using the BMDL from the best fitting model chosen from 

(M1) to (M9). Note that though these models allow for supra-linear fits, they should not be 

used for data that are thought to come from a supra-linear dose–response relationship. 

Estimation of the BMDL from these supra-linear models often equals zero. This is 

biologically unrealistic as this lower bound estimate suggests that it is probable that a single 

molecule is associated with an increased risk equal to the BMR (which is frequently 10%). 
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As a consequence additional assumptions are needed on a case by case basis when 

computing the BMD and corresponding BMDL. Since this is also the case for model 

averaging, we do not consider supra-linear dose–response relationships here.

In choosing the best fitting model for the PoD approach we use the Akaike Information 

Criterion (AIC) (Sakamoto et al., 1986), which is the criterion suggested by the EPA. Other 

criterion may be used (e.g., picking the model with the highest X2 Goodness of Fit P-value), 

but, in terms of statistical performance, they have been shown to behave similarly to the AIC 

(Wheeler and Bailer, 2009). We call this approach the Best Model – Point of Departure 

(BM-PoD) method for the remainder of this work.

2.3. Model-averaging for low-dose extrapolation

A model-averaged dose–response model synthesizes risk estimates across multiple models. 

We do not present an exhaustive description of MA, and refer the readers to the presentation 

given in Wheeler and Bailer (2007) for a fuller treatment. The model-averaged dose–

response model is written as , where πk(θ̂k, d) represents a 

dose–response model such as (M1–M9) and θ̂k is the estimated parameter vector for the 

model k, and wk is a positive weight where . For model Mk the weight wk is 

calculated according to the following formula

where Ii represents the penalized information criterion described above (e.g. AIC). For this 

study, we focus on a model family that contains k = 7 models – the nine models listed above 

excluding the multistage (M4) and the quantal-quadratic (M9). We excluded the multistage 

because the quantal-linear (M8) is a subset of (M4) and the Weibull (M7) and gamma (M3) 

are sufficiently flexible to characterize the curvature in (M4). The quantal-quadratic model 

was excluded since it is a sub model of the Weibull (M7) model. We have also observed in 

simulation studies that the inclusion of these two models was unnecessary when the other 

seven models were included in the set of models over which the averaging occurs. An 

expansion of the rationale for removing the multistage model from the family of models 

over which averaging occurs is provided in Appendix A.

Given πMA(d), one can compute the AR at any specified risk level as well as the 

corresponding model averaged BMD. The 100(1−α)% lower bound benchmark dose 

estimate is then found using a parametric bootstrap (Efron, 1987; Efron and Tibshirani, 

1993). For this study 2000, parametric bootstrap re-samples are obtained on πMA(d) and the 

BMD is calculated for each resample. The 5th percentile of these bootstrap estimates is used 

as the estimated BMDL. All model fitting and benchmark dose estimation was conducted 

using the MADr-BMD software package for dichotomous response (Wheeler and Bailer, 

2008).
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For the MA approach, we extrapolate the added risk function down to the low dose region 

directly. We do this by estimating the 95% point-wise upper-bound estimate on the D–R 

curve calculated from the bootstrap. This is the upper bound on the curve at any given dose. 

Note that this is not the simultaneous band for the entire curve (i.e., a bound on the entire 

curve), but only the point-wise interval for the curve at any given dose. We refer to this 

method as the MA-Extrapolation through the rest of this work.

2.4. Semiparametric methods for low dose extrapolation

Recently Wheeler and Bailer (2012) proposed a Bayesian semi parametric method to 

account for model uncertainty. Whereas model averaging uses a weighted average to 

compute a single dose–response curve, semiparametric methods define a single flexible 

model based upon a basis function expansion of a dose–response function (Ramsay, 2006). 

For a continuous dose–response function, the basis function representation is described as

where βh are unknown coefficients, and sh(d) are basis functions. For this analysis, we use 

the B-spline basis (De Boor, 2001), which is piece-wise polynomial function. Using the 

properties of the B-spline, Wheeler and Bailer (2012) proposed a flexible model for 

dichotomous dose response studies. In their Bayesian approach, they modify the above 

function, g(d), so that the dose–response curve represents the probability of an event given a 

dose. Here the dose–response curve is defined as πsp(d) = Φ[g(d)] where is specified as 

above using B-spline bases, and Φ(·) is defined as above.

Similar to the MA approach, this method can estimate AR(d) directly. We estimate this 

dose, as with the model average strategy, using the point-wise 95% upper bound on the 

AR(d) for a specific “d” based on bootstrapping the dose–response curve. We denote this 

method as the extrapolation and compare it to the other approaches described above.

In fitting this model, we use the same Bayesian estimation strategy and knot conditions 

(knots placed at 0%, 12.5%, 45% and 100% of the maximal dose) described in Wheeler and 

Bailer (2012). For all data sets, the posterior distribution was sampled 9500 times with the 

first 2000 samples discarded as burn-in samples.

2.5. Megatrout study

The extrapolation methods are compared using data from a large bioassay of 40,800 trout 

exposed to dibenzo[a,l]pyrene in their feed for 4 weeks (Bailey et al., 2009). In this study 

liver and stomach neoplasia are reported with both sites exhibiting low-dose non-linearity. 

We focus on pooled stomach tumor data summarized in Table 1. These data included 8 dose 

(ppm) groups (0, 0.45, 1.27, 3.57, 10.1, 28.4, 80, 225); the four lowest dose groups (0.45, 

1.27, 3.57, 10.1) exhibited low levels of risk. Due to the large number of animals in these 

groups, n = 8748, 6429, 4535, 1558, respectively, one can reliably estimate the risk of 

exposure at these dose levels and investigate discrepancies in the different extrapolation 
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approaches. The liver neoplasia data exhibited noticeable over-dispersion between labs (i.e., 

variability between labs not accounted for by standard assumptions for binomial data) and 

thus we omitted these data for this comparison. This over dispersion could be addressed 

using more complicated methods, see, e.g. chapter 12 of Agresti (2002), but is not attempted 

here.

For this study, we estimate the observed added risk for the four smallest dose groups based 

on fitting the methods described above to a data set defined by the three highest dose groups 

(28.4, 80, and 225) as well as the unexposed group. Since these estimates are generated 

without regard to the data in the low dose region, we are given a unique opportunity to 

compare low dose extrapolations of added risk (actual risk) to actual observed added risks at 

particular doses.

2.6. NTP data illustration

For further comparison, smaller experimental data sets are also investigated. These data are 

summarized in Table 2. Both data sets are long-term cancer bioassays of chemicals studied 

by the US National Toxicology Program (NTP, 1991, 1993). These examples include a data 

set exhibiting a high degree of curvature in the dose–response relationship (2,3-dibromo-1-

propanol) and a data set exhibiting a relatively linear dose–response relationship (C.I. Acid 

Red 114). While these data sets do not provide information on the added risk at very low 

doses, they do provide an opportunity to compare the methods when using types of data that 

are frequently encountered in practice. We investigate these data sets to gage possible 

differences that one may encounter between the methods in a more typical setting. For the 

comparison using these two data sets, the same fitting methodology is used as in the 

megatrout illustration.

3. Results

3.1. Megatrout study

The results of estimating the added risk from the various extrapolation methods are 

described in Fig. 2. Table 3 describes the model fits of eight models (excluding the quantal 

quadratic), which were fit using the using the EPA BMDS software for both the high dose 

data as well as all of the data. The log-probit is the best fitting model by the AIC criterion 

and is used as the BM-PoD estimate. In the figure, one can see that there is a relatively large 

difference between the observed added risk and the added risk estimated using the PoD. We 

note that the predicted risk estimates from the model average method, the semiparametric 

method, and the best model are well within the confidence intervals of the observed risk; 

however, these methods produced BMD estimates for a BMR = 10% that differed by 

approximately two orders of magnitude (see Table 4).

The BMD estimates for the extrapolation methods are compared to estimates derived from a 

D–R curve formed using a LOESS fit based upon all of the data. The LOESS smooth is not 

the true value but can be thought of as a good method for empirically inferring the BMD in 

this low BMR region. As all methods are based upon the lower bound, each method should 

be close to or less than this estimate. From Table 4 it is seen that the best model estimates of 

risk at low doses are much less than those based on the LOESS-smoothed observed risks 
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(indicating risk is being under estimated for any given dose). Similarly the PoD 

extrapolation assigned risks to doses that are much greater than the observed doses 

(indicating risk is being over estimated for any given dose). The semiparametric and model 

average estimates performed the best and provide estimates that are much closer to these 

estimates at low BMDs. It is noteworthy that the semiparametric extrapolation estimates are 

less than or very close to the LOESS BMD estimates while the BM-PoD estimates are much 

less than these values. This suggests that this method is doing a good job of providing an 

upper bound for the D–R curve in this region while not being overly conservative. We also 

note that the semiparametric model fit is very similar to a model fit based upon all of the 

data (figure not shown).

3.2. NTP data illustrations

The differences between the BM-PoD method and the MA extrapolation are further 

investigated in Figs. 3 and 4. Fig. 3 presents the risk of skin basal cell ademonas in animals 

exposed to C.I Acid Red 114 (TR 405). Here the best model is the quantal-linear model. In 

this case, the MA fit and the quantal-linear models are similar with respect to their estimated 

dose–response curves. Further the BM-PoD, MA, and the semiparametric extrapolation 

estimates are nearly identical, which may be a consequence of the observed linear dose–

response data. In this case, the three estimates of risk are indistinguishable at most doses.

Fig. 4 presents the results from the risks associated with fore-stomach squamous cell 

papillomas in animals exposed to 2,3-di-bromo-1-propanol (TR-400), which again shows 

the difference between the BM-PoD in comparison to the MA and SP extrapolation 

methods. In contrast to the C.I. Acid Red 114 (TR 405) data, these data exhibited a strong 

non-linear dose–response relationship. The added risk curve associated with the linear 

extrapolation from the BM-PoD is greater than the MA and semiparametric extrapolations. 

Though the MA and semiparametric methods produce similar estimates, there is an order of 

magnitude difference in dose estimates between these methods and the PoD method for 

doses associated with the same level of risk in the low dose region.

4. Discussion

The extrapolation of cancer risks in low doses is frequently based upon a linear interpolation 

between a point of departure and zero dose (US EPA, 2005). Here the BMDL associated 

with a BMR = 10% was used as the point of departure. In this study, we compare the 

traditional approach with a model-based extrapolation that addresses model uncertainty 

using either model-average or semiparametric methods. From this analysis, three 

conclusions can be drawn. First, the BM-PoD method differed from the model average and 

semiparametric methods by at least an order of magnitude when estimating BMDs at lower 

BMRs for the trout study, which was a large data set exhibiting a nonlinear D–R 

relationship. Here, the risks predicted from the model average curve and semi-parametric 

extrapolations were much closer to the observed risks for data in the low dose region; further 

these methods did not appear to underestimate risk as much as the best model extrapolation, 

or to overestimate the risk as much as the linear extrapolation from the PoD. Note that the 

PoD results may differ for different specified BMRs resulting in estimates similar to those 

seen with model averaging and semiparametric estimation. However, it is unclear how one 
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may, in practice, choose an appropriate BMR in a given analyses. Second, for linear dose–

response data such as the NTP C.I. Acid Red 114 study, the extrapolation methods produce 

linear estimates, and are all nearly identical for added risks as low as 1 in 100,000. However, 

if the data are nonlinear (2,3-dibromo-1-propanol), then the MA and the semiparametric 

extrapolations for risks at a particular dose can differ from the BM-PoD potentially by an 

order of magnitude. Finally, the model average and the semiparametric extrapolation 

estimates are very similar across all dose ranges, and for practical risk estimation purposes 

are indistinguishable (i.e., result in estimates that differ by less than a factor of 2).

So, what is the implication of this empirical study for cancer risk assessment for linear and 

sub-linear dose–response relationships? We believe that quantitative risk estimates based on 

either a MA-BMD or a semiparametric BMD are promising alternatives to a linear 

extrapolation from a single model PoD. In the megatrout study these methods were able to 

accurately estimate the observed risk levels at low doses (i.e. risk levels less than 1/1000) 

even when these models were developed including only the 3 high dose levels. This is 

consistent with the results of Wheeler and Bailer (2007, 2012) where BMD at risk levels of 

1/100 were accurately estimated. Further, the fact that similar estimates are derived from the 

MA and semiparametric extrapolations is reassuring and supportive of the idea that the 

statistical uncertainty in the dose–response relationship is being accounted for even in low-

dose extrapolations. Again, this result bolsters the simulation studies of Wheeler and Bailer 

(2007,2012) where the simulations showed that the statistical uncertainty was appropriately 

reflected.

We note that the MA extrapolation can only be as good as the models used, and thus the 

model space, the collection of models that are averaged, becomes of critical importance 

when using this method. Consequently the work using model averaging employing 

fractional polynomials (Faes et al., 2007) may significantly augment the model space and 

increase the robustness of the extrapolation. Further the semiparametric method, while 

flexible, is only as good as the number of basis functions and location of the knots. 

Consequently, research on proper knot selection is important. While this is promising 

advancement and alternative to linear extrapolation from PoDs, more investigation into MA 

and semi parametric methods may be needed before definitive recommendations can be 

made. What is well established by this empirical comparison and previous simulation studies 

is that, when there is non-linearity in the D-R curve, a linear extrapolation from a PoD 

results in risk estimates at low doses that are usually much larger than the true risks, and 

other methods produce better estimates in these regions. Further when the D-R curve is 

linear these alternative extrapolations produce very similar estimates when compared to the 

PoD method.
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Appendix A. Choice of models in model averaging

The choice of the models used in model averaging is of critical importance when estimating 

a dose–response relationship. If one chooses too few models, then the true model uncertainty 

may not be captured. Alternatively, if one chooses too many models, some of which have 

similar or the same curvature when fit, one may inadvertently increase the importance of a 

given dose–response relationship in the average. For example, suppose the multistage (M4) 

and quantal-linear (M9) model are included in a model average, it is possible that the 

quadratic (and higher) terms are estimated to be zero resulting in exactly the same fit as 

model M9. This, inadvertently, increases the weight of the quantal linear model in the 

average, which may assign more weight to this model than is warranted. For this reason, we 

have chosen a model space that avoids this problem by not allowing the possibility of 

duplicate models in the model suite that is we only use model (M9) instead of (M4). In other 

words, we avoid including models that are special cases of each other in the family of 

models being considered.
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This choice may seem problematic as the multistage model has a long history in risk 

assessment and for many is considered a default model. However, the focus here is to 

identify a set of models that provide adequate curvature to support possible dose–response 

relationships, and not to include any parametric model. This is very different from the 

paradigm of picking the “best” model that has dominated the literature.

As reported in Wheeler and Bailer (2007) the nominal coverage probability is often greater 

than the specified coverage probability when computing the BMDL for truly linear dose 

responses. We have found that some of this effect is ameliorated (though not completely) 

when the multistage model is removed from the set of models that are averaged. This is 

because one can, even when the true dose–response is linear, observed data may be 

consistent with a dose–response pattern that is sub-linear. In such a case, the quadratic and 

possibly higher order terms of the multistage model may be estimated to be non-zero, and if 

the quantal linear model is not included in the model suite the confidence intervals are often 

too narrow as there is no model that is representative of a linear dose–response relationship. 

Confidence intervals are typically wider when the quantal-linear model is included in the 

model space as comparedto the when the multistage model is included.

For example Table A1 shows the estimated BMD and BMDL for various BMRs for the case 

of 2,3-dibromo-1-propanol and C.I. Acid Red 114 considered in the manuscript. These 

quantities are estimated using the same procedure and models except one fit is done using 

the quantal linear without the multistage model and the other fit includes the multistage 

while excluding the quantal linear model. For practical purposes the estimates are essentially 

the same with the same pattern of linearization occurring at low BMRs. However, one will 

note that the model average that includes the quantal linear model in the model suite 

consistently estimates lower BMD/BMDLs at low BMRs. This is consistent with behavior 

we have observed in unpublished simulation studies on model averaging. Consequently, we 

remove the multistage model from the model suite and include the quantal-linear model in 

our main analysis.

Table A1

Estimated benchmark dose (BMD) and corresponding lower bounds (BMDLs) for model 

averaging under different conditions. In each analysis all used in the manuscript were 

included in the average except quantal quadratic (which was always excluded) and either the 

multistage or the quantal linear (here one was included and the other was excluded). The left 

column represents the condition where the quantal linear model was included over the 

multistage model, and the right column represents the case where the multistage model was 

used over the quantal linear model.

Quantal linear inclusion Multistage inclusion

BMR BMD (BMDL) BMD (BMDL)

T.I. Acid Red 114 0.1 51.10 (28.21) 55.21 (30.04)

0.01 7.68 (2.40) 10.06 (2.91)

0.001 0.93 (0.17) 1.47 (0.23)

0.0001 0.10 (0.01) 0.19 (0.02)
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Quantal linear inclusion Multistage inclusion

BMR BMD (BMDL) BMD (BMDL)

0.00001 0.01 (0.001) 0.02 (0.002)

2,3 dibromo-1-proponal 0.1 278.01 (233.34) 277.79 (232.72)

0.01 155.11 (86.81) 152.74 (92.65)

0.001 64.55 (15.85) 63.01 (24.54)

0.0001 12.77 (1.69) 14.42 (3.45)

0.00001 1.43 (0.17) 1.8 (0.36)
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Fig. 1. 
Illustration of the linear extrapolation to low doses from a point of departure, where the 

point of departure is estimated through the benchmark dose estimate (left pane) as well as 

the benchmark dose lower bound estimate (right pane). Hypothetical data are denoted “X” 

with the fitted statistical model displayed as a dashed line. The predicted dose associated 

with a 10% added risk is labeled the PoD.
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Fig. 2. 
Plot of the added risk versus dose. The left pane shows the fits of the best model (log-probit) 

and the Semiparametric models estimates as compared to the observed trout data that was 

not used in the fit (i.e., the doses 0.45, 1.27, 3.57, and 10.1). The right pane shows estimates 

based on a linearization from the BM-POD (BMDL10), MA average extrapolation, 

semiparametric extrapolation, and the best fitting model lower bounded risk estimates.
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Fig. 3. 
Plot of the added risk versus dose based on a linearization from the BM-PoD (computed 

from the quantal linear model), and the semiparametric prediction for C.I. Acid Red 114 

(TR-405) (MA extrapolation not shown as it is indistinguishable from the semiparametric 

curve). The left panel describes the estimated dose–response curve, and the right pane 

describes the excess risk curve of BM-PoD, and the semiparametric extrapolation.
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Fig. 4. 
Plot of the added risk versus dose based on a linearization from the BM-PoD (computed 

from the probit), the model-averaged prediction, and the semi-parametric prediction for 2,3-

dibromo-1-propanol (TR-400). The left panel describes the estimated dose–response curve, 

and the right pane describes the excess risk curve of BM-PoD, the MA extrapolation, and 

the semiparametric extrapolation.
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Table 1

The following gives a summary of the data from Bailey et al. (2009) which was used in this study. The first 

row describes the doses that were used for the model fit, with the second row describing the data points that 

were excluded from the model fit and used as crude estimates of the added risk.

Chemical (source) Site Doses (ppm) (administered) Responses/number on test

Dibenzo[a,l]pyrene Stomach neoplasia 0, 28.4, 80, 225 15/8363, 56/1211, 273/931, 395/541

0.45, 1.27, 3.57,10.1 20/8748, 12/6429, 16/4535, 8/1558
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Table 2

Summary of chemicals compared using the two low-dose methods: linear extrapolation from a POD and 

model-averaged model fitting.

Chemical (source) Animal Site Doses (administered) Responses/number on test

C.I. Acid Red 114 (TR-405) Male rats Skin: basal cell adenoma 0, 70, 150, 300 ppm (water) 1/50, 4/35, 26/65, 30/50

2,3 dibromo-1-propanol (TR-400) Male rats Forestomach: squamous cell 
papilloma

0, 188, 375 (topical) 0/50, 1/50, 17/50
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Table 3

Calculated P-value associated with a χ2 goodness-of-fit statistic and AIC for eight models fit to the 

dibenzo[a,l]pyrene data using only the three high dose data points and control (high dose data) as well as one 

using all of the data points.

Dibenzo[a,l]pyrene

High dose data All data

P-value AIC P-value AIC

Log-probit (M6) 0.95 2436.8 0.48 3211.9

Log–logistic (M2) 0.18 2438.6 0.36 3213.5

Gamma (M3) <0.01 2444.2 0.03 3220.9

Weibull (M7) <0.01 2450.2 <0.01 3233.2

Multistage (M4) <0.01 2462.1 <0.01 3263.4

Quantal linear (M8) <0.01 2537.0 <0.01 3472.7

Probit (M5) <0.01 2754.1 <0.01 3639.6

Logistic (M1) <0.01 2879.8 <0.01 3856.2
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Table 4

Estimated BMD associated with a specified added risk given an extrapolation method. The LOESS BMD is a 

LOESS smoothed estimate of the BMD, based upon the observed risk derived from all of the data, and is used 

as a guide to see how close the methods are to the observed data. As all estimates are BMDLs they should be 

approximately equal to or less than the LOESS BMD.

Method Added Risk

0.00001 0.0001 0.001

LOESS BMD 0.471 0.52 1.64

Semiparametric 0.022 0.20 1.71

BM-PoD 0.004 0.04 0.40

Best model 2.290 3.86 7.01

Model average 0.610 2.10 5.98
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